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a b s t r a c t

Here we propose an integrated framework for modeling connectivity that can help ecologists, conser-
vation planners and managers to identify patches that, more than others, contribute to uphold species
dispersal and other ecological flows in a landscape context. We elaborate, extend and partly integrate
recent network-based approaches for modeling and supporting the management of fragmented land-
scapes. In doing so, experimental patch removal techniques and network analytical approaches are
merged into one integrated modeling framework for assessing the role of individual patches as connectiv-
ity providers. In particular, we focus the analyses on the habitat availability metrics PC and IIC and on the
network metric Betweenness Centrality. The combination and extension of these metrics jointly assess
both the immediate connectivity impacts of the loss of a particular patch and the resulting increased
onservation management
etwork analysis
raph theory

vulnerability of the network to subsequent disruptions. In using the framework to analyze the connec-
tivity of two real landscapes in Madagascar and Catalonia (NE Spain), we suggest a procedure that can
be used to rank individual habitat patches and show that the combined metrics reveal relevant and
non-redundant information valuable to assert and quantify distinctive connectivity aspects of any given
patch in the landscape. Hence, we argue that the proposed framework could facilitate more ecologically
informed decision-making in managing fragmented landscapes. Finally, we discuss and highlight some

ions
of the advantages, limitat

. Introduction

Network-based modeling approaches are receiving increased
nterests in ecology (e.g. Bascompte, 2009; Bodin, 2009). Species
nteractions in food webs and plant-pollinator networks are
wo fields where network analysis is successfully applied (e.g.
ascompte et al., 2006; Pascual and Dunne, 2006). In landscape
cology and metapopulation studies network-based models (or
raph theoretical as they are often called) are used to describe and
nalyze the possibilities for species movement among spatially sep-
rated patches of habitats in heterogeneous landscapes (Keitt et al.,

997; Urban and Keitt, 2001; Jordán et al., 2003; Pascual-Hortal and
aura, 2006; Bodin and Norberg, 2007; Fall et al., 2007; Estrada and
odin, 2008; Urban et al., 2009; Saura and Rubio, 2010). Individual
abitat patches are here modeled as nodes in a spatially explicit
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and key differences between the considered metrics.
© 2010 Elsevier B.V. All rights reserved.

landscape-wide network, and the links between the nodes rep-
resent possibilities for movement or dispersal between them (i.e.
functional connectivity, see Taylor et al., 1993).

In general, network-based models and metrics have been
suggested to possess a convenient benefit to effort ratio for con-
servation problems that require characterization of connectivity at
relatively large scales (Calabrese and Fagan, 2004). They provide
a spatially explicit representation of the landscape connectivity
that is still usable even when the available information is relatively
scarce, as is usually the case in real-world planning applications
(Calabrese and Fagan, 2004). In addition, recent studies show that
some network metrics are just as good as other more complex and
biologically detailed metapopulation models in terms of their abil-
ity to, for example, identify habitat patches and linkages where
conservation or restoration efforts could favorably be concentrated
(Minor and Urban, 2007; Visconti and Elkin, 2009). Even though
many of the adaptations of network science to the analysis of eco-

logical connectivity are quite recent, there are already numerous
examples of their application for landscape conservation planning
purposes (e.g. Pascual-Hortal and Saura, 2008; Phillips et al., 2008;
Perotto-Baldivieso et al., 2009; Vasas et al., 2009; Fu et al., 2010;
Laita et al., 2010). In addition, recent empirical studies have also

dx.doi.org/10.1016/j.ecolmodel.2010.06.017
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emonstrated the capacity of the network approach to explain
elevant ecological processes and patterns related to landscape
onnectivity (e.g. O’Brien et al., 2006; McRae and Beier, 2007; Neel,
008; Andersson and Bodin, 2009).

Network-based modeling approaches currently applied in
ssessing and ranking habitat patch importance can, broadly, be
lassified into two different categories. The first category uses a
wo-stage process. First, a specific network metric developed to
ssess some aspect of the landscape’s connectivity is chosen and
alculated for a given landscape. Then, each individual patch (i.e.
ode) is removed, one at the time, and the resulting effect on the
etric is recorded (e.g. Urban and Keitt, 2001; Saura and Pascual-
ortal, 2007). Patches are then ranked according to how much the
onnectivity metric decreased when they were removed. Hence,
his category uses experiments (albeit theoretical) to assess patch
mportance. The second category uses properties or characteristics
f the intact network to assess the importance of each and every
ndividual patch. Here, network centrality is a key concept. Various
ariants of network centrality have been developed within the mul-
idisciplinary field of network analysis (e.g. Wasserman and Faust,
994). A common denominator for all these variants is that they
ssess different aspects of how influential, based on its topolog-
cal position in the network, a specific node might be. Recently,

set of different centrality measures were tested and analyzed
n terms of their potential in assessing individual patches’ contri-
ution to different aspects of landscape connectivity (Estrada and
odin, 2008).

These two categories have different benefits and limitations.
he category based on experiments delivers easily interpretable
nswers on what would be consequence of the removal of a par-
icular patch (i.e. the importance of a patch equals the reduction
f the connectivity metric following its removal). However, this
pproach is implicitly based on the assumption that the organisms
hat used to move through a particular patch are able to find the
lternative dispersal pathways throughout the reduced network of
atches, and that no competition among the dispersers for the use
f the fewer remnant pathways limits the movement abilities of
he species in the disturbed landscape.

Measures of a node’s centrality, on the other hand, assess patch
mportance based on the network model of the intact landscape.
n effect, they are aimed to assess how much (or in what way) a
articular patch is involved in the current flows of organisms in the
ndisturbed landscape. Hence, they do not explicitly try to capture
ow the flows might change as a consequence of losing a particu-

ar patch. For this reason, centrality measures do not deliver easily
nterpretable estimates of the connectivity loss following a patch
emoval.

Furthermore, none of the methods in these categories are partic-
larly good in predicting how vulnerable the remaining landscape
ould be, beyond the loss of a particular patch, to further patch

emovals. Using experimental approaches, such assessments are
nherently difficult since they require the researcher to specify a
on-arbitrarily chosen patch removal sequence beforehand. In con-
rast, assessments of patch importance using centrality measures
o not require the researcher to specify a specific patch removal
equence. However, the centrality assessments are based on the
ntact network, and they will inevitably lose relevance as more and

ore patches are removed from the undisturbed landscape.
The discussion above shows that it would be desirable to (where

elevant) bridge these different categories in such a way that their
ros are preserved while their different cons are suppressed. Also,

here is a need for new methods and metrics that help to assess
he increases in landscape vulnerability following the removal of
certain patch. In this paper, we contribute to such development
y undertaking integrated analytical investigations of the recently
roposed habitat availability (reachability) metrics probability of
lling 221 (2010) 2393–2405

connectivity (PC) (Saura and Pascual-Hortal, 2007) and integral
index of connectivity (IIC) (Pascual-Hortal and Saura, 2006), and the
network centrality metric betweenness centrality (BC) (Freeman,
1977; Bodin and Norberg, 2007). The change in the PC and IIC met-
rics following experimental removals of individual patches can be
partitioned in three different fractions which are relevant in assess-
ing the different ways a habitat patch can contribute to habitat
connectivity and availability in the landscape. In particular, one
of these three fractions (the connector fraction described further
down) evaluates a patch’s contribution to connectivity between
other patches by acting as a intermediate stepping stone patch
(Saura and Rubio, 2010). As related to this fraction, BC measures
how much a specific node sits between all other pairs of nodes in
a network, i.e. it captures how many pairs of nodes are connected
through that specific node (Freeman, 1977). A particular patch with
a high score on BC may then experience comparative large flows of
individuals that come not only from nearby patches, but also from
patches which could be located quite far away in the landscape
(Bodin and Norberg, 2007).

Based on the analyses of the PC, IIC and BC metrics, we suggest
some extensions of the BC metric in order to more clearly link these
metrics together in a common modeling framework. We show how
this framework can be used to identify critical patches upholding
dispersal processes in a fragmented landscape and to assess the
distinctive contributions of individual habitat patches to connectiv-
ity. These analytical developments are tested and evaluated using
data from two real-world landscapes in Madagascar and Catalo-
nia (NE Spain). Based on these results, we suggest a procedure that
could be used to rank patch importance. We conclude by discussing
the scope of application and ecological relevance of each of these
metrics in assessing various aspects of landscape connectivity.

2. Materials, methods and calculations

2.1. Habitat availability and network centrality

2.1.1. The habitat availability metrics PC and IIC
PC is defined as the probability that two points randomly placed

within the landscape fall into habitat areas that are reachable from
each other (see Table 1 for further details), and is given by (Saura
and Pascual-Hortal, 2007):

PC =
∑n

i=1

∑n
j=1ai · aj · p∗

ij

AL
2

(1)

where n is the number of habitat patches existing in the landscape,
each with an habitat area ai (ai could instead represent some other
relevant patch attribute such as habitat quality, although we, for
the sake of simplicity, here only use it to represent area) and AL is
the total landscape area (both habitat and non habitat). pij is the
probability of a species moving directly from patch i to j (without
passing through any intermediate patch). Using network terminol-
ogy, there is a link between patches i and j, and the weight of that
link is set to the probability of direct dispersal between the two.
Although there are several other possibilities, the probability pij
is typically computed based on a negative exponential dispersal
kernel (Hanski, 1994; Bunn et al., 2000; Hanski and Ovaskainen,
2000; Saura and Pascual-Hortal, 2007). In heterogeneous land-
scapes where the matrix is composed of several different types of
land, the permeability of the matrix differs accordingly. In such
cases, an appropriate option would be to apply a cost-distance

approach to assess the probability of dispersal between patches i
and j (e.g. Bunn et al., 2000; Fu et al., 2010). Irrespectively of which
technique is used to assess the movement probabilities pij, all the
analyses and models we apply throughout this paper, and all con-
clusions we draw from these analyses, are equally applicable. p∗

ij
is



Ö. Bodin, S. Saura / Ecological Modelling 221 (2010) 2393–2405 2395

Table 1
Summary of the metrics used in developing the integrated modeling framework of connectivity presented here. Those metrics that are equivalent, i.e. the only difference is
them being based on either the PC or IIC metrics (e.g. dPCconnectork and dIICconnectork), are described as pairs.

Metric Description and ecological interpretation

Probability of connectivity (PC) A habitat availability (reachability) index taking into account varying probabilities of direct dispersal (pij)
between different pairs of patches. It measures the probability that two animals randomly placed within the
landscape fall into habitat areas that are reachable from each other (interconnected). This requires that both
points fall into habitat areas and, in addition, that both points either fall (1) within the same habitat patch or
(2) into different but connected patches so that it is possible to move between them through the links in the
network.

Integral index of connectivity (IIC) A habitat availability (reachability) index based on a binary network (unweighted links) as the underlying
model of the fragmented landscape. It is similar to PC but, instead of assessing the probabilities for dispersal
between all pair of patches, this metric uses estimates of possibilities for dispersals between all pairs of
patches. Hence, if direct dispersal between any two patches in the landscape is assessed as being possible, the
link strength is set to unity. Otherwise, it is set to 0 (i.e. no link is assigned between the two patches).

dPCk/dIICk The loss of habitat availability caused by the removal of patch k, evaluated as the relative decrease (%) in the
PC or IIC value following the removal. It takes into account the area of habitat patch k, the estimated dispersal
fluxes that start or end in patch k, and the contribution of patch k as a stepping stone or connecting element
that upholds the connectivity between other habitat areas (see dPCconnectork/dIICconnectork below).

dPCconnectork/dIICconnectork The fraction of dPCk/dIICk corresponding to how much patch k contributes to connectivity between other
patches by serving as an intermediate stepping stone (connecting element) that cannot be fully replaced by
other patches in the network. This contribution depends only on the spatial (topological) position of patch k in
the landscape. A high value implies that the loss of k would severely reduce the connectivity between other
habitat patches.

Betweenness centrality (BCk) The sum of all shortest pathways between all pair of patches that go through patch k. Captures how much
patch k sits between all other pairs of patches in a landscape, i.e. how much patch k is involved in movements
between other pairs of patches by serving as an intermediate stepping stone patch. Patches with high scores
on BCk have been suggested as making up the backbone of the landscape since a disproportional high number
of the shortest pathways throughout the whole landscapes go through these patches.

BCPC
k

*/BCIIC
k

* A generalization of the BCk metric that takes into account patch areas and maximum product probabilities
(PC-based version) or topological distances (IIC-based version) between patches instead of only the number of
shortest paths. In this way, this generalized metric assigns more weight to the paths that are expected to carry
larger flows of organisms and that connect bigger and therefore likely more ecologically important patches.
These adjustments add more ecological relevance to the BCk metric when used in assessing connectivity in
fragmented landscapes.

C(50)PC
k

*/C(50)IIC
k

* Minimum number of patches that are able to compensate and (partially) replace >50% of the connectivity (as
measured by BCPC

k
/BCIIC

k
) that is lost following the removal of patch k. A high value implies a less vulnerable

network in terms of further patch removals since there are, by definition, many patches that will significantly
contribute in compensating for the loss of patch k. If, on the other hand, only one patch by itself stands for all

)PC
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compensation (i.e. C(50
that particular patch.

* Metrics developed in this work.

he maximum product probability, i.e. the maximum value of the
roduct of the link weights (pij) of all the possible paths connecting
atches i and j. Note that one or several intermediate links might be

ncluded in computing p∗
ij
, representing all intermediate steps that

n organism would have to pass along when following the ‘optimal’
ath (in terms of probability) from i to j. When i = j then p∗

ij
= 1 (a

atch can always be reached from itself); this relates to the habitat
vailability concept that applies to PC (and IIC), in which a patch
tself is considered as a space where connectivity exists.

The IIC metric is similar to the PC metric but based on networks
ith unweighted links (see Table 1). ICC takes into account the

opological distance (dij) between patches i and j (minimum num-
er of links that have to be passed to move from i to j). When i = j
hen dij = 0. IIC is given by:

IC =
∑n

i=1

∑n
j=1ai · aj · (1/(1 + dij))

AL
2

(2)

The importance of each individual patch k using either of these
wo metrics can be assessed by computing the metric before and

fter the removal of patch k (Eq. (3)) (Pascual-Hortal and Saura,
006; Saura and Pascual-Hortal, 2007):

PCk = 100 × PC − PCremove

PC
(3A)
C(50)IIC
k = 1), the landscape network would likely be very vulnerable to the loss of

dIICk = 100 × IIC − IICremove

IIC
(3B)

dPCk and dIICk thus represent the relative decrease (in percent-
age) of PC and IIC following the removal of patch k. Both dPCk and
dIICk can be partitioned in three fractions considering the different
ways in which a habitat patch can contribute to habitat connec-
tivity and availability in the landscape (Eq. (4)) (Saura and Rubio,
2010).

dPCk = dPCintrak + dPCfluxk + dPCconnectork (4A)

dIICk = dIICintrak + dIICfluxk + dIICconnectork (4B)

dPCintrak and dPCfluxk correspond, respectively, to patch k’s
contributions in form of its area (intrapatch connectivity) and the
flux of dispersing organism that moves to or from it. The same
applies to dIICintrak and dIICfluxk. Here, our interest is primarily the
third fraction, which corresponds to the extent to which patch k acts
as a connecting element or stepping stone between other habitat
patches, i.e. to what extent it contributes to uphold functional con-

nectivity between other patches in the landscape (Table 1) (Saura
and Rubio, 2010). In the next sections we limit the details of our
analysis to the PC-based metric dPCconnectork and how it relates
to BC; an identical analysis of the dIICconnectork metric is however
presented in Appendix A.
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In order to address these issues, we start by recognizing that to
attain a high dPCconnectork value, patch k would need to have a
high BCPC

k
(see Eq. (8)). Also, PCresidual

k
needs to be low. The former

means that a patch with a high dPCconnectork is also, by definition,

Fig. 1. A schematic illustrative network of 14 patches (represented as circles), each
396 Ö. Bodin, S. Saura / Ecologica

.1.2. Betweenness centrality (BC)
BC was originally defined for binary networks, i.e. where all links

re assigned either zero or unit value. BC for node k (BCk) is defined,
s proposed by Freeman (1977) and further described in Table 1,
s the sum of all separate shortest paths (gij(k)) between all pair of
atches (i, j /= k) that go through k, divided by the total number of
hortest paths (gij) between each pair of patches (i, j /= k):

Ck =
∑

i

∑
j

gij(k)
gij

(5)

.2. Assessing patch importance through the integration of
etwork analysis and patch removal experiments

Here we investigate how the PC metric relates, analytically,
o the network centrality metric BC. A similar analysis of the
IICconnectork metric is presented in Appendix A.

.2.1. Integrating dPCconnectork and betweenness centrality
The dPCconnectork metric can be expressed as the sum of two

ifferent terms (Eq. (6)):

PCconnectork = 100
PC

∑
i

∑
j
aiajp

∗k
ij {i, j /= k and ij ∈ nm∗}

−100
PC

∑
i

∑
i
aiajp

∗
ij,k removed{i, j /= k and ij ∈ nm∗

(6)

here nm* represents the list of combinations of i and j (i /= j)
here k is included in the shortest path between i and j in the

nitial/intact landscape (before removing k). That is, those pairs
f nodes whose connection is favored by the presence of k (as a
tepping stone facilitating the dispersal between i and j). p∗k

ij
is the

aximum product probability between those nodes i and j (belong-
ng to nm*) in the intact landscape. For the sake of simplicity, here

e assume that a single shortest path (which is the path that max-
mizes the product probability) exists between i and j. Implications
f multiple shortest paths are discussed in Appendix B. p∗

ij.k removed

epresents the maximum product probability of the path between
and j after removing patch k (where i and j belong to nm* in the

ntact landscape). It is apparent that p∗k
ij

≥ p∗
ij.k removed

≥ 0 for every
air of patches i and j. None, some, or all of the new maximum
roduct probability paths (p∗

ij.k removed
) will include new nodes as a

esult of the removal of node k (which, by definition, was included
n p∗k

ij
in the intact landscape).

The first sum in Eq. (6) is conceptually similar to BC but takes
nto account areas and dispersal probabilities (weights of the links
n the network), and uses the maximum product probabilities to
efine the shortest paths between nodes. From a landscape ecolog-

cal perspective, including both the area product and the weighted
inks in a modified BC metric seems like a plausible and convenient
eneralization, making it conceptually compatible with the charac-
eristics of the PC metric. We suggest the proposed generalization
f the BC metric (denoted BCPC

k
, see Eq. (7)) as being particularly

uitable for assessing the betweenness of a patch when the actual
ows of organisms, and not just the possibilities for dispersals, are
eing considered.

CPC
k =

∑
i

∑
j

aiajp
∗k
ij {i, j /= k and ij ∈ nm∗} (7)
The last sum in Eq. (6) represents all rewired maximum proba-
ility paths (i.e. shortest paths) that emerge following the removal
f patch k. These are the alternative shortest paths that are avail-
ble, after losing k, for connecting those pairs of patches whose
lling 221 (2010) 2393–2405

connection was favored by the presence of k in the intact land-
scape. Thus, the sum can be interpreted as a residual network where
only paths between the pairs of patches that previously were con-
nected through k are considered. We denote this residual network
as PCresidual

k
, and thus we can rewrite Eq. (6) as follows (Eq. (8)).

dPCconnectork = 100
(BCPC

k
− PCresidual

k
)

PC
(8)

2.2.2. Using the proposed framework to assess different aspects of
connectivity

By having linked dPCconnectork with the generalized BC metric,
we can now use this integrated modeling framework of connectiv-
ity, that resembles the desired features from both these different
types of metrics, to assess different connectivity aspects of individ-
ual habitat patches. First, it is clear that patches with high values
of dPCconnectork are crucial because their removal would imme-
diately reduce the connectivity, and therefore preserving these
patches should clearly be of highest priority. This is shown in Fig. 1
where the removal of node 4 or 9, which are the ones with the
highest dPCconnectork, would lead to an immediate fragmentation
of the network into isolated components.

However, a more complex question is how to rank patches that
are no such obvious cut nodes. In Fig. 1, this is illustrated by the
patches 2–3 and 5–8. None of these patches have dPCconnectork > 0,
because there are alternative paths between the remnant patches
that are as good as the ones in the intact landscape. For example,
after losing patch 2, patches 1 and 4 are still connected through
a path with p∗

ij
= 0.25 (p∗

14 = p13 × p34 = 0.5 × 0.5 = 0.25), exactly as
before, since patch 3 fully compensates for the loss of 2 as quan-
tified by p∗

ij
. However, having a low value of dPCconnectork does

not guarantee that the removal of patch k does not severely affect
the underlying dispersal pathways of the intact network as cap-
tured by the generalized BC (the dispersal backbone, see Bodin and
Norberg, 2007; Urban et al., 2009). Furthermore, losing a patch with
high BCPC

k
may also have implications for the vulnerability of the

remaining network to further patch removals (e.g. after losing patch
2 the network would be severely affected by a subsequent loss of
patch 3).
with an area = 1 and where pij = 0.5 for all links represented by black lines (pij = 0
for all the other pairs of patches). The dPCconnectork = 0 for all patches except for
nodes 9 and 4 (for which dPCconnectork equals 30.2% and 12.2%, respectively). The
generalized betweenness centrality is 32.8% for patch 9, 15.2% for patch 4, 1.7% for
patches 5–8, 1.6% for patches 2–3, 0.42% for patch 1 and 0.0% otherwise (all metric
values expressed as percentage of the PC value in the intact landscape).
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patch with high BCPC
k

. Furthermore, the fact that PCresidual
k

must be
ow means that no other remaining patch in the residual network
pairs of patches for which the shortest path passed through k in
he intact landscape) are able to fully compensate for the loss of
atch k. That is, the alternative paths available after losing k are
uch fewer and/or weaker than those that were maintained by

he presence of k. In other words, the connectivity of the residual
etwork PCresidual

k
is low compared to that of the intact landscape.

In other cases, a certain patch k might score high in BCPC
k

,
ut other patches could be in place to compensate for the

oss of k by providing opportunities for a rewired connectivity
ackbone. In such cases, PCresidual

k
would also be high, yielding

low dPCconnectork. Hence, it seems important to distinguish
etween patches with high values of both dPCconnectork and BCPC

k
,

nd patches with high values of BCPC
k

but with a low value of
PCconnectork (Table 2).

The BCPC
k

of patches 2–3 and 5–8 in Fig. 1 are, respectively, 1.6%
nd 1.7%. This tells us that patches 5–8 are likely to be slightly
ore important in providing a backbone for long-range connec-

ivity throughout the network. The remaining patches following
he removal of any of the patches 2–3 or 5–8 will, however, be able
o fully compensate for the loss of connectivity (dPCconnectork = 0).
he most remarkable difference between the patches 5–8 and 2–3

ies in how this compensation is distributed among the remaining
atches. For example, if patch 2 is removed, patch 1 would be com-
letely dependent on the remaining patch 3 to stay connected to the
est of the network. In other words, patch 3 alone will compensate
or the loss of patch 2. On the other hand, if patch 5 is removed,

able 2
nterpretation of the characteristics and role of the habitat patches as connectivity pro

odeling framework. The table is equally applicable for the IIC-based metrics.

Metric value

dPCconnectork BCPC
k

C(50)PC
k

High
BCPC

k
� dPCconnectork

Low

High

BCPC
k

≈ dPCconnectork
Low

High

Low
High Low

High

Low
Low

High
lling 221 (2010) 2393–2405 2397

the compensation is shared equally among patches 6–8. Thus, in
comparison with the removal of patch 2, losing patch 5 seems less
critical in terms of the vulnerability of the remaining network.

This shows that the number of patches that compensate for the
removal of a certain patch does have an impact on the vulnerability
of the remaining network to further patch removals. However, the
number, by itself, will not reveal anything about how the compen-
sation is distributed among the remnant patches. If, for example,
most of the compensation is done by just one patch even though
several other patches also contribute, this information is not cap-
tured by just counting the number of compensating patches.

Thus, it would be desirable to measure to what extent each
and every patch in the residual network PCresidual

k
will contribute

to the compensation following the loss of patch k. In order to do
so, we start by recognizing that the generalized BC of the patches
in the residual network can also be calculated, although now only
accounting for the pairs of patches where patch k was included in
the shortest path in the intact landscape (we denote this BCPC(k)

i,k removed

for all patches i in the residual network PCresidual
k

).
This allows us calculating the changes in generalized BC

(�BCPC(k)
i

) of each and every node i in the residual network PCresidual
k

before (BCPC(k)
i

) and after (BCPC(k)
i,k removed

) the removal of patch k (Eq.
(9)).
�BCPC(k)
i

= BCPC(k)
i,k removed

− BCPC(k)
i

{i ∈ nm∗} (9)

As said, of particular interest is whether these changes are dis-
tributed equally among the remnant patches, or if just one or a few

viders depending on the values of the three metrics considered in the integrated

What do the metric values indicate about the role of habitat patch k as a
connectivity provider?

A central and irreplaceable patch being instrumental in upholding the
strongest and most frequent paths throughout the landscape. Its loss
cannot be fully compensated for by other patches in the network and
will cause a significant decrease in landscape connectivity.
Many important pathways constituting the dispersal backbone of the
landscape network disappear and/or get significantly weakened. In
addition, some of these losses will be compensated for by a small set of
remaining patches. Therefore, the landscape will likely be very
vulnerable to further removals affecting any of these few compensating
patches.
As above except that the compensation is shared among a larger set of
remnant patches in the landscape. Therefore, the landscape is likely less
vulnerable to further patch removals.
If BCPC

k
= dPCconnectork there are no available pathways other than these

that will be permanently destroyed. Therefore no compensation is
possible, and C(50)PC

k equals 0. If BCPC
k

is only a little a bit larger than
dPCconnectork , then only a minor part of the connectivity provided by k
can be compensated for by other patches, and C(50)PC

k would remain
being equal to 0.
Not possible, for the reason described above.

Although many important pathways constituting the dispersal backbone
of the landscape network disappear and/or get significantly weakened,
most or all of these losses can be compensated for by a small set of
remaining patches. Hence, if the dispersing species are able to change
their movement patterns in line with the new spatial configuration of
the remnant landscape, the net effect on connectivity remains low.
However, the landscape will likely be very vulnerable to further
removals affecting any of those compensating patches.
As above except that the compensation is shared among a larger set of
remnant patches in the landscape. Therefore, the landscape is less
vulnerable to further patch removals.
The patch does not significantly facilitate the connectivity between
other habitat patches in the landscape, and is therefore of little interest
in terms of its contribution as an intermediate stepping stone patch.
Same as above.
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3. Results

We started by varying the distance thresholds D, for both study
areas, to estimate at which dispersal distances the intermedi-
ate connecting patches are most important for overall habitat
398 Ö. Bodin, S. Saura / Ecologica

atches alone will compensate for the loss of patch k. In order to
easure this property, we define C(50)PC

k as the minimum num-

er of patches for which the sum of their �BCPC(k)
i

exceeds 50% of

he BCPC
k

(Table 1). If, for example, C(50)PC
k equals one, one remain-

ng patch will alone compensate for more than 50% of the BCPC
k

of

he removed patch k. Thus, a higher C(50)PC
k would imply a less

ulnerable network following the removal of patch k since a fairly
igh number of nodes would be able to step in and (at least partly)
ompensate for the loss. If compensation of 50% of the BCPC

k
of the

emoved patch k is not possible, C(50)PC
k is 0 (or just undefined).

he C(50)PC
k of the nodes 2–3 and 5–8 in Fig. 1 are, respectively, 1

nd 2, which is in accordance with the discussion above. In Table 2
e summarize our discussions on all these metrics.

.3. Evaluation of the integrated framework in real landscapes

The theoretical investigations provided us with a modeling
ramework that seems applicable in valuing and prioritizing the
mportance of individual habitat patches in a fragmented land-
cape. However, in order to evaluate the performance of this
ramework in a real-world setting we tested it in two different land-
capes. We modeled these landscapes using the network-based
pproach, and then we calculated all the metrics analyzed in this
ork, both on the node and the whole network level. We used the

reely available software tools JMatrixNet (Bodin et al., 2006) and
onefor Sensinode (Saura and Torné, 2009) (www.conefor.org) to
arry out the calculations (the latter slightly modified). MatLab was
sed to present the results graphically.

We run the analyses for different estimates of species dispersal
bilities. For the binary networks models that we constructed to
valuate the IIC-based metrics, we defined a threshold distance D.
ll patches separated with a distance larger than D were considered
s disconnected, and therefore no link was assigned between them
n the network model. For the probabilistic networks used when
alculating the PC-based metrics, we estimated the direct dispersal
robability pij between patch i and j using the negative exponential
unction of the Euclidean interpatch distance (straight line edge-
o-edge distance). This is expressed as pij = exp(−k × d) where d is
he distance between the patches (cf. Hanski, 1994) and k is a con-
tant that is set to k = 1/D in order to obtain the same overall level
f connectivity as in the binary model where pij = 1 if d < D and 0
therwise. In this way, the integral from zero to infinity of the pij
unction equals D both in the binary and probabilistic models.

We varied the distance threshold D to get an overview on where
PCconnectork, dIICconnectork and the corresponding generalized
C are of most significance (cf. Saura and Rubio, 2010). Then we cal-
ulated all metrics for those threshold distances. We selected the 20
atches with the highest scores of the PC- and IIC-based versions of
he generalized BC metric for both study areas and presented these
atches in more detail. We also calculated the Pearson correlation
oefficient between relevant pair of metrics to evaluate to what
xtent they captured different aspects of the landscape connectiv-
ty. For all calculations, we accounted for the potential existence of

ultiple shortest paths (Appendix B).

.3.1. Study areas description
The two landscapes we used for the evaluation were (1) a agri-

ultural landscape in southern Madagascar (Bodin et al., 2006), and
2) a forested landscape covering the capercaillie (Tetrao urogallus)

abitat in Catalonia (NE Spain) (Estrada et al., 2004; Pascual-Hortal
nd Saura, 2008). The Madagascar landscape is located in the
ndroy region in the very south of Madagascar. It contains hun-
reds of small forest patches that are scattered in an agricultural

andscape and together only constitute approximately 3.5% of the
lling 221 (2010) 2393–2405

total geographical area (Bodin et al., 2006). The Spanish landscape
comprises the areas of suitable habitat for the capercaillie in the
region of Catalonia, which has a total extent of about 32,000 km2.
The capercaillie habitat is however concentrated in the upper
mountain and subalpine forests in the Pyrenees and Pre-Pyrenees
at the north of Catalonia, where it occurs at its southernmost part
of its European distribution. Capercaillie is an endangered species
in this region that is severely affected by the loss of habitat connec-
tivity, among other conservation threats. Habitat distribution data
for this species were obtained from the Catalan Breeding Bird Atlas
1999–2002, as a result of field surveys and niche-based modelling
(Estrada et al., 2004). An estimate of the probability of capercail-
lie occurrence was obtained in that atlas for every 1 km × 1 km
cell in Catalonia. Here, we considered as habitat those cells with
a probability of capercaillie occurrence of at least 0.2, as in Pascual-
Hortal and Saura (2008). This yielded a total of 522 1 km × 1 km cells
confined in 131 geographically separated habitat patches (nodes).
Fig. 2. (A and B where A corresponds to the Madagascar study area, and B to the Cat-
alonian study area) Sum of dPCconnectork and dIICconnectork values for all patches
k, expressed as their proportion of the total sum of all dPCk and dIICk , respectively,
for increasing threshold distances D (cf. Saura and Rubio, 2010).

http://www.conefor.org/
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onnectivity and availability in the landscape as measured using
IICconnectork and dPCconnectork (Fig. 2A and B). The maximum
ontribution of dIICconnectork (as shown in Fig. 2) was consider-
bly higher (peaks at about 40% and 35% for the Madagascar and
atalonian cases respectively) and was found at a lower dispersal
istance than for dPCconnectork (which never exceeded 7% and 11%
or the two study areas). For large dispersal distances, the contri-
ution of dPCconnectork was on the other hand higher than that of
IICconnectork (Fig. 2). The contribution of dIICconnectork is almost
ero for large distances, but dPCconnectork still makes some contri-
ution at these distances.

At a threshold distance of 2.5 km, dPCconnectork is at its maxi-
um for the Madagascar case, and the dIICconnectork is also fairly

igh (although it peaks for a slight lower value of d). The same
ccurred for a threshold distance of 6 km for the Catalonian case.
his is actually close to the estimated 5 km of median dispersal dis-
ance for the capercaillie in the Pyrenees (Menoni, 1991). Thus, we
sed these threshold values for the rest of the analysis. The rational
or using these threshold values is that those species having a dis-
ersal distance of approximately D will experience the landscape as
ragmented, but still fairly well connected since many intermediate
tepping stone patches are within reach thus making movements
hroughout the landscape possible and feasible in successive steps
hrough those intermediate patches. When the dispersal abilities
re large enough (well above D), species can move directly from one
atch to another without needing intermediate stepping-stones or

onnecting elements that facilitate this dispersal (Saura and Rubio,
010). On the contrary, when dispersal is largely limited (dispersal
istances below D), species cannot move to any other piece of habi-
at in the landscape, and virtually no habitat patch can be used as a

ig. 3. (A) and (B) represent the Madagascar study area (B being a close-up of a portion o
odes (patches) are represented by circles and the links by lines in all figures. The thresho
adagascar and 6 km for Catalonia. The sizes of the nodes are proportional to BCPC

k
(gray

alue of these specific metrics for the networks. The grayness is approximately proportio
n Figs. 5 and 6.
lling 221 (2010) 2393–2405 2399

stepping stone for further movement to other destination patches.
Hence, the threshold distance D approximates the peak of a distinc-
tive region of connectivity in between a fully fragmented landscape
where dispersal is inherently limited, and a landscape where direct
dispersals between any pair of patches are increasingly possible.
Accordingly, it is mostly for species within this region of connec-
tivity that our results are of immediate relevance since our focus
is primarily on how different patches contribute as connectivity
providers facilitating movements throughout the landscape. The
results for the three metrics in the integrated framework (Table 2)
calculated at these threshold distances are graphically presented in
Figs. 3 and 4.

Figs. 3 and 4 illustrate that there are large variations among the
patches in terms of their scores on the different metrics, which
seems to reveal relevant and not necessarily self-evident infor-
mation about the patches’ contribution to different aspects of
landscape connectivity. The abovementioned variability is clearly
shown in Figs. 5 and 6 where the 20 patches with the highest
scores of the PC-and IIC-based versions of the generalized BC met-
ric are presented together with their scores of dPCconnectork and
dIICconnectork (sorted based on their BC scores). In all, Figs. 3–6 indi-
cate that it is not necessarily the case that if a patch scores high on
BCPC

k
, it always scores high on dPCconnectork (and the same applies

to the IIC-based metrics).
In the Madagascar landscape, the Pearson correlation coeffi-

PC

k k

patches is r = 0.79, and between dIICconnectork and BCIIC
k

r = 0.47.
For the Catalonian case, the Pearson correlation coefficient between
dPCconnectork and BCPC

k
is r = 0.92, and between dIICconnectork and

BCIIC
k

r = 0.69.

f the network in A). (C) and (D) similarly represent the Catalonian study area. The
ld distance D, used when constructing these network models, was set to 2.5 km for
circles) and dPCconnectork (black circles). The sizes are relative to the maximum

nal to C(50)PC
k (darker = lower values). The labels in (B) and (D) refer to the patches
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Fig. 4. (A) and (B) represent the Madagascar study area (B being a close-up of a portion of the network in A). (C) and (D) similarly represent the Catalonian study area. The
nodes (patches) are represented by circles and the links by lines in all figures. The threshold distance D, used when constructing these network models, was set to 2.5 km for
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adagascar and 6 km for Catalonia. The sizes of the nodes are proportional to BCIIC

alue of these specific metrics for the networks. The grayness is approximately pro
n Figs. 5 and 6.

. Discussion

.1. An integrated modeling framework for PC, IIC and the
eneralized betweenness centrality

As shown by the analytical evaluation of these conceptually dif-
erent metrics, it is clear that they are capturing different aspects
f a patch’s contribution to the connectivity of the landscape
Table 1). Furthermore, the evaluation also shows how these con-
eptually different metrics are analytically related to each other.
his provided for an integration of the two conceptual different
pproaches typically applied when assessing patch importance
sing a network-based approach (i.e. patch removal experiments
nd network analysis) into a common modeling framework. The
nalytical linkages between these different conceptual approaches,
s we have shown here, can help a researcher to assess different
onnectivity aspects of individual patches in an integrated way
ithout being limited to either one of these conceptual approaches

Table 2). Finally, by adding patch area and varying dispersal possi-
ility to the generalized BC metric (Eqs. (7), (A2); and Eqs. (B3) and
B6)), the metric will not only be more compatible with the PC and
IC metrics, but it will also better account for spatial characteristics
f importance in assessing species dispersals in landscapes.
.2. Towards an integrated patch ranking procedure

As indicated in Figs. 5 and 6, neither dIICconnectork nor
PCconnectork seem to coincide with BCIIC

k
or BCPC

k
for the top 20

atches, and thus they apparently capture quite different connec-
circles) and dIICConnectork (black circles). The sizes are relative to the maximum
nal to C(50)IIC

k (darker = lower values). The labels in (B) and (D) refer to the patches

tivity characteristics. If exactly the same set of patches would score
high using any of these metrics, the presented modeling framework
would naturally be of little practical value. Hence, although the lev-
els of correlations for the complete set of patches are fairly high,
the variability among individual patches is considerable, and we
argue that taking these differences into account would lead to more
ecologically well-informed decisions when prioritizing patches for
conservation.

Note for example the patches P403 and P351 in Fig. 5A where
the ratios of BCPC

k
to dPCconnectork are very different (see also

Fig. 3B). Patch P403 has a high BCPC
k

whereas the dPCconnectork is
very small, and patch 351 has a slightly lower BCPC

k
but a much

higher dPCconnectork. Hence, these patches are important since
they both are significant components of the connectivity backbone
(captured by their high scores on BCPC

k
). However, losing patch P403

will not necessarily induce any sharp reduction in connectivity
(captured by dPCconnectork) assuming that the dispersing organ-
isms will quickly find new shortest paths through the landscape to
compensate for the loss, whereas losing patch P351 actually has a
notable impact as evaluated by dPCConnectork. Furthermore, it is
interesting to compare patch P308 with P561 (Fig. 5A and Fig. 3B).
They score fairly equal on both dPCconnectork and BCPC

k
, but the

C(50)PC
k is much higher for P561 (seen by the different levels of gray-

ness in Fig. 3B). Hence, if patch P308 is lost, the following increase

in BCPC

k
among remaining patches will be limited to very few or

just one patch. Hence, the vulnerability of the connectivity back-
bone would increase significantly. On the other hand, losing patch
P561 implies that a larger number of patches will compensate for
the loss, leaving the network comparatively less vulnerable to fur-
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ig. 5. Generalized betweenness centrality BCPC
k

and dPCConnectork , ordered by BCPC
k

top 20 patches) for the Madagascar case (A) and the Catalonian case (B).

her removals. This shows the ability of the C(50)PC
k metric to assess

ndividual patch importance for a set of patches with similar values
f dPCConnectork and BCPC

k
(Table 2).

The same pattern applies for the IIC-based metrics. Note for
xample the patches P713 and P927 in Fig. 6A where the ratios of
CIIC

k
to dIICconnectork are very different (see also Fig. 4B). Removing

atch P927 will immediately and significantly reduce the con-
ectivity as quantified by dIICconnectork, whereas removing P713
ould not. The BCIIC

k
of P713 is, however, quite high. Hence, remov-

ng P713 would require a substantial rewiring of the dispersal
athways in the remaining network.

However, it is not always a trivial task to balance between the
ifferent connectivity aspects captured by the dPCconnectork met-
ic, the BCPC

k
metric and the C(50)PC

k metric when assessing the
mportance of the different patches (Tables 1 and 2). Typically the
eneralized BCPC

k
and C(50)PC

k would complement the prioritiza-
ion provided by dPCconnectork in those cases where dPCconnectork
s zero (or low), or when two or more patches have the same

or rather similar) dPCconnectork values (the same applies for the
IC-based metrics). As illustrated above, there can be large varia-
ions of the BCPC

k
and C(50)PC

k metrics for patches with very similar
PCconnectork values (and vice versa). Hence, it seems reasonable
Fig. 6. Generalized betweenness centrality BCIIC
k

and dIICConnectork , ordered by
BCIIC

k
(top 20 patches) for the Madagascar case (A) and the Catalonian case (B).

to group patches with similar scores on the dPCconnectork together,
and then evaluate their contributions to the connectivity internally
within the groups based on their scores on the BCPC

k
and C(50)PC

k
metrics. In using this approach, small variations in dPCconnectork
among patches within the same group are discarded as insignifi-
cant, and instead priority is given to the BCPC

k
and C(50)PC

k metrics.
The groups themselves should, however, be ranked according to
their mean dPCconnectork scores, and the ranking of the groups
outweighs the internal ranking of the patches within the groups.
To illustrate this, consider the following example: patches P59, P95
and P30 have very similar dPCconnectork scores (Fig. 5B), and could
thus be ranked as approximately equally important if only con-
sidering the dPCconnectork metric. However, the BCPC

k
metric for

P95 and P59 is nearly twice the value for P30, and these patches
should therefore be considered more important. Furthermore, the
C(50)PC

k is lower for P95, thus that patch would rank higher than P59
(P95 also has a slightly higher BCPC

k
). Hence, the large difference in

BCPC and to some extent C(50)PC would outweigh the small differ-

k k

ence in dPCconnectork within that group. However, the value of the
dPCconnectork metric for P96, which is not part of this group, is sig-
nificantly higher (about 30%) than for any of the patches P59, P95
and P30, and should therefore be considered more important than
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ny of the patches within that group. In summary, based on these
esults and our previous elaboration of different aspects of indi-
idual patches’ contribution to landscape connectivity (Table 2),
e propose a generalized patch ranking procedure as follows (the
rocedure is equally applicable for IIC- as for PC-based metrics):

. Assess dPCconnectork, BCPC
k

and C(50)PC
k for all patches.

. Group patches with similar values on dPCconnectork.

. Divide the patches in the groups above into subgroups based on
them having similar scores of BCPC

k
.

. Rank all patches according to the following criteria (with a
descending order of priority):

. Their group’s average score of the dPCconnectork.

. Their subgroup’s average score on BCPC
k

.

. Their score of C(50)PC
k (the lower the more important).

Although the proposed framework and suggested ranking pro-
edure provided by the integrated evaluation of these different
etrics shows potential for ecologically informed multi-criteria

onnectivity analyses, we fully acknowledge that this procedure
s just a general skeleton that would need to be calibrated for spe-
ific ecological processes and adjusted to the needs of particular
onservation management applications. Although this is out of the
cope of this paper, empirical data, spatial explicit population mod-
ls and/or simulations would be required to validate and/or refine
he general procedure outlined above. In the same way, the involve-

ent of stakeholders and local expert knowledge would help to
ecide the final weight that should be given to each of these metrics,
s suited to the management objectives and conservation context
f specific cases. For example, this could be the case of deciding if
atch 2 in Fig. 1 is to be considered more or less important than
atch 5 for the purposes of a particular conservation plan. Both
atches 2 and 5 have dPCconnectork = 0, and patch 5 has a slightly
igher BCPC

k
but also a higher value of C(50)PC

k (Fig. 1). If, for exam-
le, the risk for further removals is assessed as low, a manager
ight choose to overlook the lower value of C(50)PC

k for patch 2 and
nstead focus on the fact that patch 5 has a slightly higher value of
CPC

k
and thus assign a higher priority for preserving patch 5. On

he other hand, if the risk for further removals is assessed as high, a
anager might instead focus on the lower value of C(50)PC

k for patch
and hence assign a higher priority to that patch. This altogether

hows that these different metrics should be evaluated together,
nd depending on the particularities and management needs in a
iven situation, more weight should be given to one or the other
etric. In spite of this irreducible ambiguity, we still argue that by

pplying these different metrics, a manager would be given a set of
elevant tools that would help to make these kinds of assessments
ess arbitrary and more transparent.

We conclude this discussion on patch ranking with some notes
bout the PC-based metrics. As said earlier, when using a nega-
ive exponential dispersal kernel based on the Euclidean distance
etween patches to assess dispersal probabilities, no pij’s would
qual zero and hence, from a topological point of view, a link exists
etween every pair of patches. Hence, in order for a patch to have
PCconnectork greater than zero, it has either to: (1) be located quite
lose to the shortest possible straight line connecting a particular
air of patches, and/or (2) extend spatially in approximately the
ame order of magnitude, or higher, as the dispersal distance of the
tudies species. If none of these criteria are fulfilled, dPCconnectork

ould be zero, and the potential of a patch acting as a stepping

tone is accordingly very low (BCPC
k

would be very low as well). On
he other hand, if at least one of these criteria is fulfilled, it seems
uite unlikely that dPCconnectork would be exactly zero for a given
atch since that would require another patch to be situated in such
lling 221 (2010) 2393–2405

a way in the landscape that its contribution as intermediate step-
ping stone, as expressed by the dPCconnectork metric, would be
exactly the same as the first patch. This altogether suggests that if
a patch has a dPCconnectork equal to zero, it is fairly unlikely that
its BCPC

k
would be greater than zero. In fact, both case studies sup-

port this claim. In Madagascar, all patches with a dPCconnectork
equal to zero also have a BCPC

k
equal to zero (not shown). In Catalo-

nia, basically the same pattern applies. So it seems that BCPC
k

and

C(50)PC
k do not provide much help for ranking those patches that

have a dPCconnectork = 0 and are therefore only of use for patches
with a dPCconnectork greater than zero. It is, however, important to
point out that this does not apply when using the IIC-based met-
rics. Most of the patches where the dIICconnectork equals zero still
have a C(50)IIC

k and BCIIC
k

greater than zero (both in the Madagascar
and Catalonia study areas). This difference is also captured by the
lower correlations between the IIC-based metrics as compared to
the PC-based metrics.

4.3. PC- and IIC-based metrics – which one to use?

It seems clear that PC- and IIC-based metrics are quite differ-
ent in their practical outcomes since patches with high scores on
the PC-based metrics do not necessarily score high on the IIC-
based metrics. This is qualitatively shown in Fig. 3A and C where
the patches with the highest scores of dPCconnectork are situated
more at the core of the networks whereas patches with high scores
on dIICconnectork tend to be situated comparatively more in the
periphery and/or along single pathways (as seen in Fig. 4A and C).
Furthermore, the dIICconnectork tends to represent a larger pro-
portion of dIIC as compared to dPCconnectork vs. dPCk for short
dispersal distances, whereas the opposite applies for long disper-
sal distances (Fig. 2). This means that, for the study areas presented
here, intermediate patches seems to be more important (for short to
intermediate dispersal distances) when representing the landscape
as a binary network in comparison to the probabilistic network
model that is used for the PC-based metrics. The probabilistic net-
work model accounts for direct dispersal also between patches that
are separated by comparatively large distances and hence weakly
connected, whereas the binary network model completely disre-
gards these links and instead fully relies on intermediate stepping
stone patches for dispersals. This reduces the strong influence of
intermediate stepping stone patches in probabilistic models for
short to intermediate dispersal distances. However, in landscapes
different from those studied here, where the spatial extent of the
patches is in the same order of magnitude as the dispersal distances
of the species, intermediate stepping stone patches would be of
higher importance also when applying the PC metric for short to
intermediate dispersal distances.

For our study areas, losing some of the most critical stepping
stone patches in the binary network model can completely break
the network into isolated network components which instantly
reduces the IIC score. This kind of criticality is also reflected in Fig. 2
where the shapes of the dIICconnectork curves are more irregular
compared to the dPCconnectork curves. When increasing the thresh-
old dispersal distance D, patches that were previously isolated
will become connected, and sometimes they also connect isolated
groups of patches together. From that follows that the importance
of intermediate stepping stone patches can vary very rapidly when
changing the threshold distance for the IIC-based metrics.

On the other hand, losing a stepping stone patch in the prob-

abilistic network used to construct the PC metric will only reduce
the amount of flux, not fully break the network apart. This is an
effect of the exponential dispersal kernel typically applied to cal-
culate the dispersal probabilities. Since the probability pij is always
>0 for finite distances, losing a patch may decrease the flows, but
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ever cut them down completely as in the binary case. Therefore
PCconnectork does not experience the sharp thresholds as seen for
he dIICconnectork metric.

When the dispersal distance is high, eventually higher than the
aximum distance separating any pair of habitat patches, then a

ink exists between any pair of patches. Therefore any habitat patch
an be reached directly from any other patch without the need of
ny other stepping stone patch (dIICconnectork = 0). However, in
he probabilistic model that applies to PC, if the direct dispersal
robabilities have been computed as a negative exponential of the
dge-to-edge distance between patches, even if the dispersal dis-
ances are very high, the direct dispersal probabilities will never
e as high as 1 (as long as the distance between patches is higher
han zero). Therefore, the loss of intermediate habitat patches will
lways have some effect (even if it is weak) on the connectivity
etween the remnant patches as quantified by PC. This explains
hy the proportion of the connector fraction is higher for dPC than

or dIIC at large threshold distances (Fig. 2).
The key question is, therefore, when is the PC metric more

ppropriate, and when is the IIC metric the one to choose? As
lways, it depends on the question. The PC metric encapsulates the
stimated magnitudes of the dispersal flows, and it does not rely
n a, sometimes arbitrary, sharp fixation of an assessed thresh-
ld dispersal distance. Instead, it gives more weight to patches
nd links that potentially carry large flows of organisms, and much
ess weight to patches and links that carry fewer organisms. Fur-
hermore, since the PC metric uses the product of the individual
ispersal probabilities between pair of patches to assess the flows
hroughout the network, it follows that if these pair-wise probabil-
ties pij are �1, the product decreases very rapidly, and essentially
anishes for network distances (i.e. number of intermediate links)
igher that just a few number of steps. Thus, the patches that are
onfined within relatively dense clusters, where the patches are
ituated fairly close to each other, are the ones that will score
igh on dPCconnectork. This is seen, for example, by comparing
he Figs. 3A and 4A. In Fig. 3A, many of the patches in the dense
luster in the western region of the study area reach high scores
f the dPCconnectork, whereas their scores on dIICconnectork are
nsignificant (Fig. 4A). Hence, if the main interest is to study flows of
rganisms irrespectively of their origin (i.e. if they are from neigh-
oring patches, or if they originate from more long-distant patches),
C-based metrics are preferred. One typical situation where this
pproach is highly applicable is when assessing whether a certain
et of patches would be suitable as a home range for a particular
pecies. For a set of patches to be able to attract that species, the
et should not be experienced as too scattered thus making it too
ard for the species to fulfill its daily needs of finding food, shelter,
tc. (e.g. Andersson and Bodin, 2009).

In some cases it is, however, reasonable to disregard the exact
ssessments of the dispersal probabilities in the PC-based metrics
nd apply the IIC metrics instead. If focus is, for example, on genetic
ransmission, is does not matter that much if the flow of organisms
s very high or low, as long as it is high enough to provide at least
ne or few immigrating individual organisms for each generation
Mills and Allendorf, 1996; Wang, 2004). Actually, this implies that
he IIC metrics may be better suited to study long-term mixing of
opulations instead of the actual movement of individuals. As long
s the movement probability for an individual situated in a certain
atch to reach a neighboring patch is not too low, it is reasonably to
ssume that at least one individual can mix with the local popula-
ion in the neighboring patch and thus create a new foothold from

here further genetic transmission can take place. This means that

ll patches that are genetically connected would, over time, make
p a single metapopulation. This suggesting discussion is supported
y the findings from a recent study where more significant corre-

ations were found between genetic diversity statistics and the dIIC
lling 221 (2010) 2393–2405 2403

metric compared to the dPC metric (Neel, 2008). Furthermore, in
applying this IIC-based perspective on dispersal, more focus is laid
on the topology, or reachability, of the network, and less focus on
assessing the actual quantities of organisms that flow throughout
the landscape.
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Appendix A. Extending the analysis and ranking procedure
to the IIC metric

Similar as for the PC metric, IIC can be divided into three different
fractions (Eq. (4B)). The last fraction (Eq. (4B)) can be expressed as
follows (Eq. (A1)):

dIICconnectork

= 100
IIC

∑
i

∑
j
aiaj(1/(1 + dij)){i, j /= k and ij ∈ nm∗}

− 100
IIC

∑
i

∑
j
aiaj(1/(1 + dij,k removed)){i, j /= k and ij ∈ nm∗}

(A1)

The first sum in Eq. (A1) is similar to the proposed BCPC
k

metric
but instead of the maximum probability product, an inverse func-
tion of the topological distance is used to define and weight the
shortest paths (Table 1). We denote this modified form of between-
ness centrality BCIIC

k
(Eq. (A2)).

BCIIC
k =

∑
i

∑
j

aiaj
1

1 + dij
{i, j /= k and ij ∈ nm∗} (A2)

As before, nm* represents the list of combinations of i and j
(i /= j) where k is included in the shortest path between i and j
in the initial/intact landscape (before removing k). Also, the second
sum in Eq. (A1) represents the residual network IICresidual

k
follow-

ing the removal of patch k, where the residual network is made up
of the patches that previously were connected through patch k. In
comparing with the original definition of BC, BCIIC

k
is including the

area product, and instead of accounting for the number of shortest
paths, irrespectively how distant the pair of nodes are, BCIIC

k
gives

less weight to the shortest paths connecting nodes that are more
distant (i.e. the denominator in Eq. (A2) increases with the number
of intermediate links). Thus, similarly to BCPC

k
, this metric weights

the shortest paths depending on their assessed “strength”, but BCIIC
k

is only accounting for the topological network distance and not an
estimated potential flow of organisms.

Furthermore, we use the same approach as in Eq. (9) to define
the changes in �BCIIC(k)

i
in the residual network IICresidual

k
(Eq. (A3)).

�BCIIC(k)
i

= BCIIC(k)
i,k removed

− BCIIC(k)
i

{i ∈ nm∗} (A3)

IIC IIC(k)
C(50)k is then defined as the minimum number of �BC
i

that, summed up, exceed 50% of the BCIIC
k

(Table 1). C(50)IIC
k for

patch 2 and patch 5 in Fig. 1 equal 1 and 2 respectively and are,
in this case, the same as C(50)PC

k . As discussed earlier, the removal
of patch 2 leaves the remnant network more vulnerable to further
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atch removals than what the removal of patch 5 would have done,
nd that property is accordingly captured by the C(50)IIC

k metric in
he same way that for C(50)PC

k . Thus we conclude that the patch
anking procedure presented earlier is equally applicable as when
sing these IIC-based metrics.

ppendix B. Accounting for multiple shortest paths

The analytical investigations of the different metrics suggests
generalization of the PC and IIC metrics to make them bet-

er suited to specifically deal with cases when multiple shortest
aths between patches exist in the landscape (like in the originally
efined BC metric). Here we present how to account for the poten-
ial presence of multiple shortest paths. It should be noted that this
oes not change the computations nor the interpretations of the PC
nd IIC metrics themselves, but it makes it explicit how the individ-
al patches contribute to the metrics in those cases where multiple
hortest paths exists. We first present how we generalized the PC
etric to take into account possible existence of multiple shortest

aths. Exactly the same procedure is then applied to the IIC metric.
We started by modifying the following in the definition of the

C metric (Eq. (B1)).

∗
ij = 1

L

L∑
l

p∗l
ij (B1)

here p∗l
ij

is one of the L shortest paths between node i and j. Obvi-

usly, p∗
ij

= p∗l
ij

for all l ∈ L. Thus, this modification does not change
he value of the computed PC metric, but it clearly shows that all
ossible shortest path can be accounted for by assuming that the
otal flow going through all shortest paths should be the same as
f there was just one shortest path. BCPC

k
, as a result of applying

q. (B1) for computing the pijs, will now include all pairs of i and j
here k is included in at least one of the (possibly multiple) short-

st paths. This also implies that there might be paths that do not
nclude k (Eq. (B2)).

∗
ij = 1

L

L∑
l

p∗l
ij =

(
Lk∑
l

p∗l(k)
ij

L
+

Lk′∑
l

p∗l
ij

L

)
{L = (Lk + Lk′ )} (B2)

here Lk and Lk′ , and p∗l(k)
ij

and p∗l
ij

, represent the numbers, and
aximum probability products, of the shortest paths including and

xcluding k, respectively. If there are shortest paths that do not
nclude k, these paths will clearly remain the same following the
emoval of k.

Furthermore, we also make it explicit that the generalized ver-
ion of the betwenness centrality (BCPC

k
, Eq. (6)) should, in line

ith the original definition of betweenness centrality, account for
ultiple shortest paths. Thus, we rewrite Eq. (6) into Eq. (B3):

CPC
k =

∑
i

∑
j

aiaj

Lk∑
l

p∗l(k)
ij

L
{i, j /= k and ij ∈ nm∗} (B3)

Since the first sum in Eq. (B2) is included in the refined defini-
ion of BCPC

k
(Eq. (B3)), and the last sum in Eq. (B2) remains intact

ollowing the removal of node k, we need to add the last sum in Eq.
B2) to the right hand side of Eq. (6) which we then rewrite as Eq.

B4).

PCconnectork = 100
PC

(
BCPC

k
−
∑

i

∑
i
aiajp∗

ij,k removed
+
∑

i

∑
i
aiaj

∑Lk′
l

p∗l
ij

L

)
{i, j /= k and ij ∈ nm∗} (B4)
lling 221 (2010) 2393–2405

Hence, this last sum can be regarded as a correction term follow-
ing the generalized definition of the betweennness centrality. The
term compensates for the flows that arise from all shortest paths
that are parallel to the ones where node k is involved, but which are
not included in the definition of the BCPC

k
. This becomes apparent

by rearranging the sums in Eq. (B4) where the value of the parallel
shortest paths not including k should be subtracted from the new
emerged paths p∗

ij
in the residual network (see Eq. (B5)).

dPCconnectork = 100
PC

(
BCPC

k
−
(∑

i

∑
j
aiajp∗

ij,k removed
−
∑

i

∑
j
aiaj

∑Lk′
l

p∗l
ij

)
L

)

= 100
PC

(
BCPC

k
−
∑

i

∑
j
aiaj

(
p∗

ij,k removed
−
∑Lk′

l
p∗l

ij

)
L

)

{i, j /= k and ij ∈ nm∗} (B5)

When a single shortest path exists then Lk′ = 0 and Lk = 1, and Eq.
(B5) simplifies to Eq. (6).

Following the same procedure as above, but for the IIC metric,
gives Eqs. (B6) and (B7).

BCIIC
k =

∑
i

∑
j

aiaj

Lk∑
l

1/(1 + dl(k)
ij

)

L
{i, j /= k and ij ∈ nm∗} (B6)

dIICconnectork

= 100
ICC

(
BCIIC

k
−
(∑

i

∑
j
aiaj

(
(1/(1 + dij,k removed)) −

∑Lk′
l

(1/(1 + dl
ij
))
))

L

)

{i, j /= k and ij ∈ nm∗} (B7)

where dl(k)
ij

and dl
ij

and represents the shortest topological paths
between patch i and j that are, and are not, including patch k,
respectively.
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